.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/multiscaling/plot_multiscaling.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_multiscaling_plot_multiscaling.py: .. _multiscale_triangle_mesh_example: Multiscaling with triangle meshes ================================== We use the :class:`skshapes.Multiscale` class to create a multiscale decomposition of a triangle mesh. This is useful to accelerate some processing steps, such as multigrid simulations or level-of-detail rendering. .. GENERATED FROM PYTHON SOURCE LINES 11-12 First, we load the Stanford bunny as a triangle mesh. .. GENERATED FROM PYTHON SOURCE LINES 12-19 .. code-block:: Python import pyvista as pv import skshapes as sks bunny = sks.PolyData(pv.examples.download_bunny()) .. GENERATED FROM PYTHON SOURCE LINES 20-21 Then, we create the multiscale representation with different sampling ratios. .. GENERATED FROM PYTHON SOURCE LINES 21-25 .. code-block:: Python multiscale_bunny = sks.Multiscale(shape=bunny, ratios=[0.1, 0.01, 0.001]) .. GENERATED FROM PYTHON SOURCE LINES 26-29 Under the hood, we rely on quadric decimation (`Garland and Heckbert 1997 `_) to reduces the number of vertices, iteratively collapsing the edge with the smallest approximation error. This algorithm is implemented by the `fast-simplification `_ package. .. GENERATED FROM PYTHON SOURCE LINES 29-47 .. code-block:: Python pl = pv.Plotter(shape=(2, 2)) for i, ratio in enumerate([1, 0.1, 0.01, 0.001]): # Use the '.at()' method to access the shape at different scales sampled_bunny = multiscale_bunny.at(ratio=ratio) pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=sampled_bunny, show_edges=True, title=f".at(ratio={ratio}), {sampled_bunny.n_points:,} points", ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_001.png :alt: plot multiscaling :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_001.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_001.vtksz .. GENERATED FROM PYTHON SOURCE LINES 48-52 Please note that calling the :meth:`~skshapes.multiscaling.multiscale.Multiscale.at` method with an arbitrary ratio returns the most compact (i.e. the coarsest) representation stored in the :class:`Multiscale` object that is at least as detailed as the specified ratio. .. GENERATED FROM PYTHON SOURCE LINES 52-69 .. code-block:: Python pl = pv.Plotter(shape=(2, 2)) for i, ratio in enumerate([0.5, 0.1, 0.05, 0.01]): # Use the '.at()' method to access the shape at different scales sampled_bunny = multiscale_bunny.at(ratio=ratio) pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=sampled_bunny, show_edges=True, title=f".at(ratio={ratio}), {sampled_bunny.n_points:,} points", ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_002.png :alt: plot multiscaling :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_002.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_002.vtksz .. GENERATED FROM PYTHON SOURCE LINES 70-72 Alternatively, we can use the ``n_points`` parameter to specify the desired number of points per resolution level. .. GENERATED FROM PYTHON SOURCE LINES 72-90 .. code-block:: Python multiscale_bunny = sks.Multiscale(shape=bunny, n_points=[3000, 1000, 300, 100]) pl = pv.Plotter(shape=(2, 2)) for i, n_points in enumerate([3000, 1000, 300, 100]): # Use the '.at()' method with the n_points parameter instead of ratio sampled_bunny = multiscale_bunny.at(n_points=n_points) pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=sampled_bunny, show_edges=True, title=f".at(n_points={n_points}), {sampled_bunny.n_points:,} points", ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_003.png :alt: plot multiscaling :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_003.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_003.vtksz .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 5.995 seconds) .. _sphx_glr_download_auto_examples_multiscaling_plot_multiscaling.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_multiscaling.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_multiscaling.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_