.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/multiscaling/plot_multiscaling_landmarks.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_multiscaling_plot_multiscaling_landmarks.py: .. _multiscale_landmarks_example: Multiscaling and landmarks ========================== The :class:`skshapes.Multiscale` class preserves landmarks across scales. .. GENERATED FROM PYTHON SOURCE LINES 10-15 .. code-block:: Python import pyvista as pv import skshapes as sks .. GENERATED FROM PYTHON SOURCE LINES 16-17 To demonstrate this, we first load a mesh with a collection of key points. .. GENERATED FROM PYTHON SOURCE LINES 17-25 .. code-block:: Python mesh = sks.PolyData(pv.examples.download_louis_louvre().clean()) landmarks = [151807, 21294, 23344, 25789, 131262, 33852, 171465, 191680] landmarks += [172653, 130895, 9743, 19185, 143397, 200885] mesh.landmark_indices = landmarks .. GENERATED FROM PYTHON SOURCE LINES 26-28 Then, we compute a multiscale representation of our mesh using 10%, 1% and 0.1% of the original point count. .. GENERATED FROM PYTHON SOURCE LINES 28-32 .. code-block:: Python ratios = [1, 0.1, 0.01, 0.001] multiscale = sks.Multiscale(shape=mesh, ratios=ratios) .. GENERATED FROM PYTHON SOURCE LINES 33-36 The :attr:`~skshapes.PolyData.landmark_points` and :attr:`~skshapes.PolyData.landmark_indices` attributes of the shape are transported consistently between the different scales. .. GENERATED FROM PYTHON SOURCE LINES 36-53 .. code-block:: Python pl = pv.Plotter() pl.open_gif("animation.gif", fps=1) for ratio in ratios: mesh_i = multiscale.at(ratio=ratio) print(f"with {mesh_i.n_points:,d} points, landmarks = ") print([int(i) for i in mesh_i.landmark_indices]) pl.clear_actors() sks.doc.display(plotter=pl, shape=mesh_i) sks.doc.display(plotter=pl, shape=mesh_i.landmark_points, color="red") pl.camera_position = "xz" pl.camera.zoom(1.4) pl.write_frame() pl.show() .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_landmarks_001.gif :alt: plot multiscaling landmarks :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_multiscaling_landmarks_001.gif :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none with 210,873 points, landmarks = [151807, 21294, 23344, 25789, 131262, 33852, 171465, 191680, 172653, 130895, 9743, 19185, 143397, 200885] with 21,067 points, landmarks = [14747, 1615, 2465, 10164, 16549, 3281, 16824, 18981, 16971, 5351, 943, 1778, 13775, 16290] with 2,087 points, landmarks = [144, 181, 205, 203, 1630, 336, 1659, 1690, 1090, 1202, 73, 157, 1917, 1566] with 188 points, landmarks = [19, 84, 20, 17, 28, 27, 147, 33, 32, 184, 12, 126, 169, 137] .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 29.846 seconds) .. _sphx_glr_download_auto_examples_multiscaling_plot_multiscaling_landmarks.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_multiscaling_landmarks.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_multiscaling_landmarks.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_