.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/multiscaling/plot_signal_multiscale.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_multiscaling_plot_signal_multiscale.py: .. _multiscale_signal_propagation_example: Multiscaling and signal propagation =================================== We propagate a signal across the different shapes of a multiscale representation, using rules that are specified by a :class:`FineToCoarsePolicy ` and a :class:`CoarseToFinePolicy `. .. GENERATED FROM PYTHON SOURCE LINES 13-14 First, we load the Stanford bunny as a triangle mesh and sub-sample it using 10%, 1% and 0.5% of the original point count. .. GENERATED FROM PYTHON SOURCE LINES 14-24 .. code-block:: Python import pyvista as pv import skshapes as sks bunny = sks.PolyData(pv.examples.download_bunny()) ratios = [1, 0.1, 0.01, 0.001] multiscale_bunny = sks.Multiscale(shape=bunny, ratios=ratios) .. GENERATED FROM PYTHON SOURCE LINES 25-26 Then, we define a signal on the original, high resolution surface mesh. .. GENERATED FROM PYTHON SOURCE LINES 26-34 .. code-block:: Python # Extract the 2nd coordinate "y" of each point "xyz" signal = multiscale_bunny.at(ratio=1).points[:, 1] # Use it as a "height" signal multiscale_bunny.at(ratio=1).point_data["height"] = signal .. GENERATED FROM PYTHON SOURCE LINES 35-41 We use the :meth:`~skshapes.multiscaling.multiscale.Multiscale.propagate` method to transfer the signal from our high resolution mesh to the coarser scales. .. note:: Accessing the multiscale representation at ``ratio=1`` always returns the finest shape. .. GENERATED FROM PYTHON SOURCE LINES 41-55 .. code-block:: Python multiscale_bunny.propagate( signal_name="height", from_ratio=1, fine_to_coarse_policy=sks.FineToCoarsePolicy(reduce="mean"), ) pl = pv.Plotter(shape=(2, 2)) for i, ratio in enumerate(ratios): pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=multiscale_bunny.at(ratio=ratio), scalars="height" ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_001.png :alt: plot signal multiscale :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_001.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_001.vtksz .. GENERATED FROM PYTHON SOURCE LINES 56-62 Conversely, let us propagate a signal from the coarser resolutions to the finer levels of detail. .. note:: Accessing the multiscale representation at ``ratio=0`` always returns the coarsest shape. .. GENERATED FROM PYTHON SOURCE LINES 62-82 .. code-block:: Python signal_coarse = multiscale_bunny.at(ratio=0).points[:, 1] multiscale_bunny.at(ratio=0).point_data["signal"] = signal_coarse # propagate the signal from the lower resolutions to the higher resolution multiscale_bunny.propagate( signal_name="signal", from_ratio=0, coarse_to_fine_policy=sks.CoarseToFinePolicy(smoothing="constant"), ) pl = pv.Plotter(shape=(2, 2)) for i, ratio in enumerate(reversed(ratios)): pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=multiscale_bunny.at(ratio=ratio), scalars="signal" ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_002.png :alt: plot signal multiscale :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_002.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_002.vtksz .. GENERATED FROM PYTHON SOURCE LINES 83-88 The ``"constant"`` policy results in sharp transitions between regions of the surface that were collapsed to the same coarse point. To mitigate this issue, we can use a ``"mesh_convolution"`` :class:`CoarseToFinePolicy ` that interleaves smoothing steps between the jumps from coarse to fine scales. .. GENERATED FROM PYTHON SOURCE LINES 88-105 .. code-block:: Python multiscale_bunny.propagate( signal_name="signal", from_ratio=0, coarse_to_fine_policy=sks.CoarseToFinePolicy( smoothing="mesh_convolution", n_smoothing_steps=2, ), ) pl = pv.Plotter(shape=(2, 2)) for i, ratio in enumerate(reversed(ratios)): pl.subplot(i // 2, i % 2) sks.doc.display( plotter=pl, shape=multiscale_bunny.at(ratio=ratio), scalars="signal" ) pl.show() .. tab-set:: .. tab-item:: Static Scene .. image-sg:: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_003.png :alt: plot signal multiscale :srcset: /auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_003.png :class: sphx-glr-single-img .. tab-item:: Interactive Scene .. offlineviewer:: /home/runner/work/scikit-shapes/scikit-shapes/doc/source/auto_examples/multiscaling/images/sphx_glr_plot_signal_multiscale_003.vtksz .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 3.743 seconds) .. _sphx_glr_download_auto_examples_multiscaling_plot_signal_multiscale.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_signal_multiscale.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_signal_multiscale.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_